Scripting Language and Scripting Engine

Programming Guide
Document Number 013-RD000-000-12- 201010

Offices:
830 Douglas Ave., Dunedin, FL, USA 34698
Phone 727.733.2447
Fax 727.733.3962

8 a.m.— 8 p.m. (Mon-Thu), 8 a.m.— 6 p.m. (Fri) EST

E-mail: Info@QOceanOptics.com (General sales inquiries)
Orders@QceanOptics.com (Questions about orders)
TechSupport@OceanOptics.com (Technical support)

— | —

HALMA

GROUP
COMPANY

Additional [OXLR1N0) Ji LW E]

Offices: 666 Gubei Road, Kirin Tower, Suite 601B, Changning District, Shanghai,
200336 PRC

Phone 86.21.6295.6600
Fax 86.21.6295.6708
E-Mail Sun.Ling@OceanOptics.com

Geograaf 24, 6921 EW DUIVEN, The Netherlands
Phone 31-(0)26-3190500

Fax 31-(0)26-3190505

E-Mail Info@OceanOptics.eu

Regional Headquarters
Maybachstrasse 11

73760 Ostfildern

Phone 49-711 34 16 96-0
Fax 49-711 34 16 96-85
E-Mail Sales@Mikropack.de

Copyright © 2010 Ocean Optics, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written permission from Ocean Optics, Inc.

This manual is sold as part of an order and subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out or
otherwise circulated without the prior consent of Ocean Optics, Inc. in any form of binding or cover other than that in which it is published.
Trademarks

All products and services herein are the trademarks, service marks, registered trademarks or registered service marks of their respective owners.
Limit of Liability

We have made every effort to make this manual as complete and as accurate as possible, but no warranty or fitness is implied. The information

provided is on an “as is” basis. Ocean Optics, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this manual.

Table of Contents

ADBOUL ThiS MaNUAL.......e e et e e e e e e eeeeeaas vii
Document Purpose and Intended AUdIENCE..........ccooiiieiiii i Vi
DOCUMENT SUMIMAIY ...ttt e ettt ra bt e e e s b b et e e s sabeee e anbree e e sanbeeeeeans vii
Product-Related DOCUMENtationeeeiiiiii e vii

Chapter 1: Introductionccoveeccciiiirrec e e e e 1

OVEIVIBW ...ttt ettt ettt ettt et ettt e et eeeteeee et eeeeeeeeeeeeteeeeeeeeeeeeeeeees 1

Goals of the Jaz Scripting LangUageccieeiaiiiiiiiiiiiie et 1

Operating SyStem SUPPOITooiiiiiiiiiie ettt e e e e e eeeeeeee e 2

Chapter 2: Jaz Scripting Engine Architectureccccovrmciriennnnnne 3

OVEIVIEW ...ttt ettt ettt ettt ettt ettt et e et eee et eeeaeeeeeeeeeaeeeeaeeeeaeeeeeeeeeseeeeseeeeeees 3

B E= 4 Ty o £ R 3
SCript General LAYOUL........oooi it e e e e e e e e e e e e e e e e e eeeaae s 3

Chapter 3: Installation ... e 9

OVEIVIBW ...ttt ettt ettt ettt ettt e et ee et eee et tee e taeeeeeeeaeeeeseeeeaeeeeseeeeaeeeeaeneeeees 9
RetrieViNg from @ CD ...t e e 9
Downloading from the Ocean Optics Website............coooiiiiiiiiiii e 10

Transferring JSL 10 JAzZ.......coooiiiiiiiiii e e 10

Chapter 4: Windows Scriptor Launcher...........cocoiiiiiiiieecciiiens 11

INEFOAUCTION. ... e e 11

(070 aVilo U] =1 i o] o PRSP 11
PrErEQUISITES ..ottt et e e e e e e e e e et r e e e e e e e e e e nnnneneeeeaaannes 11

Running the AppliCation........ ..o e e e e 12
Scriptor Launcher Main WINAOWoooiiiiii e e e e e e e e e e 12
Chapter 5: Using the Jaz Scripting Engine........ccccoovvieiiiiiciiirennnns 15
L@ YT T PP 15
ENGINE AFQUMENES ...t e e e e e e e e e e ee e e e e e eeeeaaees 15
TEINEIEA IMOUE ...ttt nne e 16

B = 748 1Yo o = 16

013-RD000-000-12- 201010 iiii

Table of Contents

Chapter 6: Functions Reference............cccoccirriininininncieiene, 17
2 00 1 17
o £ o PRI 17
2 o 17
] | 18
F TS To a1 =T e] o 1Y/ o 1= PPUPPRPPP 18
Call -- UserFunctionINVOCAtION............ueiiiiiiiiiiiiiiiie ettt ee e eaeeeeeeeesneees 19
L0 0= o PP 19
L0 o 1= 1 PP 20
[©7] 410 01> 0 | S PP 20
[©7] 1 4 o J PSPPSR 21
(O] 41 0= o PP 21
O 1 PP PSPPRPPPRPPPP 21
DISPIAY .o 22
DISPIAYMST... e 22
[T R I Lo o = T 23
[T o] o= (= 23
P 23
GetlNtegratioNTiMEooo e et e e e e e 24
GetLampPINtENSILYoeii e e 24
GetLampPSRULETo e e 25
GEESPECIIUM ... e et eee e 25
€T) o PSPPSR 25
R 26
LDl . 26
LocateWavelength... ..o e 27
oo PP 27
[0 T 1 O PO 28
[0 | T 28
MU < 28
N O I 29
L@ 0] =181 (o] o 1 o QPSPPSR 29
L]] 4 (o) PSPPI 30
(@ 0] =14 (o] €] (o PP 30
L@ 1= o 1 = PP 31
= LU 32
PO 32
[0] 01 o) USSR 33
= 1T 33
REAAREAIVECION ... ettt e e e e e e e e ettt e e e e e e e aeeeeenans 34
(== To =1 o[REPPRRPR 34
TN =T (=T To [T o [T PPPPPPPPRPRT 35

iv 013-RD000-000-12- 201010

Table of Contents

R Tor= | [TR 35
SetDISPIAYPIECISION.ueei i e e 36
SetINtegratioNTiME c..ccuueie i e e ———— 36
S LamPINtENSILY ... e 36
SetLamMPSRUIET ... e 37
] 1o 1Y€ =1 o] o H TR 37
] e 10T 1= o U O 38
]| S OUPUPPRPRP 38
T o PSSP PPPRPRP 38
I O UUPROPRPPN 39
WaVELENGN ... 39
VB IO e e e ettt e e e e et e e e et e e e e ett e e e e e sttaeeeeenn e eeens 40
LT 1 CE3ST T U TR 41
Appendix A: Example SCriptsccceiiiiieiiiireec s ee e reeeee 43
Bare Script TEMPIAtEvviiiii e e 43
Complete Example Script -- (Demonstrates syntax)ccceevvviiiiiiiii e, 43
PH Measurement SCHPL oo e e e 46
3 o =GP 63

013-RD000-000-12- 201010

Table of Contents

Vi 013-RD000-000-12- 201010

About This Manual

Document Purpose and Intended Audience

This document provides you with instructions to install and use the Jaz Scripting Engine.

Document Summary

Chapter

Description

Chapter 1: Introduction

Provides an overview of the Jaz Scripting Language (JSL)
software.

Chapter 2: Jaz Scripting Engine
Architecture

Describes the structure of JSL.

Chapter 3:_Installation

Provides installation instructions for JSL on a Windows or
Linux operating system.

Chapter 4: Windows Scriptor Launcher

Contains instructions for using the Scriptor Launcher, a
graphical interface for Ocean Optics’ Scriptor Scripting for the
Jaz system when used with Windows.

Chapter 5: Using the Jaz Scripting
Engine

Describes how to use the Jaz Scripting Engine.

Chapter 6: Functions Reference

Contains an alphabetical list of JSL functions, including the
syntax, arguments and intent for each.

Appendix A: Example Scripts

Provides several example scripts for reference.

Product-Related Documentation

o Jaz Installation and Operation Manual

You can access documentation for Ocean Optics products by visiting our website at
http://www.oceanoptics.com. Select Technical — Operating Instructions, then choose the appropriate
document from the available drop-down lists. Or, use the Search by Model Number field at the bottom

of the web page.

You can also access operating instructions for Ocean Optics products on the Software and Technical

Resources CD included with the system.

Engineering-level documentation is located on our website at Technical — Engineering Docs.

013-RD000-000-12- 201010

vii

http://www.oceanoptics.com/

About This Manual

viii 013-RD000-000-12- 201010

Chapter 1

Introduction

Overview

Jaz is a community of smart sensing instruments that consists of a high-performance miniature
spectrometer that accommodates USB and Ethernet connectivity (for PC-free performance), battery
operation, multi-spectrometer channel capability, and a selection of light sources. It’s the next generation
spectrometer brought to you by Ocean Optics, the company that invented the world’s first miniature fiber
optic spectrometer and has delivered over 120,000 instruments for a wide range of applications since
1992.

The uniqueness of Jaz lies in its adaptability. You can easily mix and match Jaz modules to optimize
setups for thousands of absorbance, reflectance and emission applications. Jaz comes with its own basic
software, and SpectraSuite Spectroscopy Operating Software is also available for post-acquisition
processing of spectral data. Jaz Scripting Language (JSL) software takes it one step further by offering a
Jaz scripting engine, a powerful tool simple enough for nonprogrammers to create their own applications
for Jaz. JSL allows you to build a sequence of steps for performing and analyzing spectral data for your
unique application.

Goals of the Jaz Scripting Language

The Jaz Scripting Language (JSL) has been designed to provide a sequence of actions to be performed on
either the Jaz hardware or a host computer connected to Jaz via Ethernet. The language is intended to
provide the primitive functions that would be useful in performing automated tasks. Its syntax is skewed
towards the linear model of BASIC with some enhancements.

The overall goals of the language are as follows:

e Simple non-programmer oriented syntax -- case insensitive and one directive per line syntax
e Primitives that map well to the tasks which may be performed on the target hardware
e Provision for user-defined routines to encapsulate repetitive tasks

e Integration into the Jaz matrix of daemon processes with minimal exposure of script authors to
the underlying complexities of the Jaz architecture

e Simple algebraic expressions for basic computation and script flow logic

e Interpreted runtime with an engine that is multi-platform and may serve as an infrastructure
component for graphical user script design and debugging.

e Strongly typed language with type coercion made by the script engine as appropriate

013-RD000-000-12- 201010 1

1: Introduction

Operating System Support

e Microsoft Windows — Windows 7, 2000, XP; 32-bit and 64-bit
e Linux — Red Hat 9 or later, Fedora (any version), Debian 3.1 or later (Sarge), SUSE (9.0 or later),
Centos (any version), and Ubuntu

2 013-RD000-000-12- 201010

Chapter 2

Jaz Scripting Engine
Architecture

Overview

The Jaz Scripting engine comprises the linguistic analyzer for the language as well as the runtime driver
for script execution. The engine is invoked in the standard UNIX command line format with command
flags and arguments which determine modes of actions and the source of input.

Jaz Scripts

A script is an ASCII text file which can be composed by whatever means a user wishes to employ. Care
has been taken to filter out extraneous characters used as formatting by some editors. Plain 7-bit ASCII
text is the expected input.

Script General Layout

A script has the following sections:

e Constants (optional)

e JVariable Declaration

e Main Program
o User-defined Procedures (optional)

Constants (optional)

Constants are values the script writer wishes to reference as if they were built-in elements. A Constants
section is not mandatory. If defined, the script engine defines the constant’s type via a strict parse of the
value. Constants may not be changed once defined. The script engine will flag all attempts to redefine a
constant at compilation time.

Variable Declaration

Variables must be declared before use in the program or in user-defined procedures. A variable has a
name, a type, and possibly a modifier (depending on the type). The script engine checks the type of each
variable for the appropriateness of its type in an expression. Type mismatches are flagged by the parser at
compile time as errors. There must be a Variable Declaration section as the script would be useless
without variables to operate on.

013-RD000-000-12- 201010 3

2: Jaz Scripting Engine Architecture

All variables are global in scope. That means that all variables to be used in the entire script must be
declared in the Variable Declaration section. All variables are visible from both the main program and
from user-defined procedures.

A variable is declared as <name> <type> <optional count>
Where:
type = one of the data types in the following Data Types table
optional count = the way an array is declared. See the example below.
Example:

Lamplntensity INT 16 declares a single integer while LamplIntensity INT 16 40 declares
Lamplntensity to be an array of 40 integers. Array indexing is inclusive [0...N-1] for a declaration of
VariableName Type N.

Scripting language is case-insensitive so that VariableOne, variableOne, and VARIABLEONE all
reference the same variable. Therefore, it is illegal to have a declaration section like the following:

VariableOne INT 16
VARIABLEONE INT 16 .. error re-declaration or duplicate.

However, you can use any capitalization style you wish in your script since any sequence resolves to the
same variable.

Data Types
Type Name Contents Notes
INT_8 8-bit integer
INT_16 16-bit integer This is the preferred integer form
INT_32 32-bit integer
TEXT Null-terminated character
string
REAL Single-precision floating point
SPECTRAL Represents a spectrum
reading
FILE File of spectral data ASC = ascii
CSV = comma separated
RAW = tab delimited
TABLE 2-dimensional array of real Meant to be used in computation with sample
numbers spectrum

4 013-RD000-000-12- 201010

2: Jaz Scripting Engine Architecture

TEXT Literals

A literal of type text may need to have carriage returns inserted within them to make screen text readable.
For example, to have the string Test1Test2Test3 show up on separate lines, insert the '$' character
wherever a new line is desired. Internally, the scripting engine inserts the carriage returns as in
TestlS$Test2$Test3.

Arithmetic

The scripting engine supports simple algebraic expressions including parenthesis nesting, unary minus
(negation), and +,-./,*. It does not support nested functions in expressions since scripting functions do not
return a value. This is in keeping with the BASIC language paradigm.

Assignment: MyIntegerVariable := (2 * (MyPixel[J] - BIAS/100)), where :=is the
assignment operator.

Evaluation: TF (MyVariablel = MyVariable2) GOTO RESET, where = is the boolean
comparison operator. Please note that : = and = are not interchangeable.

Operators

Symbol Name Type

+ Addition Arithmetic
- Subtraction Arithmetic
/ Division Arithmetic
* Multiplication Arithmetic
() Parenthesis nesting Arithmetic
-() Negation of a quantity Arithmetic
0 Array Element Indexing
= Equals Boolean
<> Not Equals Boolean
>= Greater than or equal Boolean
<= Less than or equal Boolean

013-RD000-000-12- 201010 5

2: Jaz Scripting Engine Architecture

Symbol Name Type

> Greater than Boolean

< Less than Boolean
= Assignment Arithmetic

Main Program

The Main Program section typically defines the main logic flow of the script. The Main Program begins
with the keyword START and is terminated with the keyword END. The keyword STOP marks the end of
the script and is logically paired with the keyword SCRIPT. Labels can be placed before a statement to
make that statement a destination for a GoTo statement.

User-defined Procedures

You can define routines to carry out repetitive tasks or other repeatedly used tasks. User-defined
procedures are declared after the body of the main program (i.e., after the END of the Main Program
section). The syntax is:

[Process ProcessName] and is terminated with the keyword END.

To invoke a user-defined procedure, use the following:

CALL ProcessName
A procedure shares the same variables as the main section but it may have its own labels to avoid
confusion. A procedure may not execute a GoTo to a label outside itself. For example, if the Main

Program section has a label ‘A’ and the procedure has a GoTo A then the procedure must also have a
label ‘A’, or it is an error.

Flow Control

Control flow is achieved with GOTO and CALL statements. All loop iteration structures may be realized
with judicious use of labels and GOTO statements. For example a FOR loop might be coded in the
following way:

I :=0

Label FORLOOP

if (I >= N) GOTO ENDFOR
(your calculations here)
I :=1+1

GOTO FORLOOP

Label ENDFOR

(rest of program)

6 013-RD000-000-12- 201010

2: Jaz Scripting Engine Architecture

The DO ... DONE construct is a special iteration construct. It behaves exactly like a FOR loop, but with
one special caveat: a DO ... DONE loop cannot have GOTO statements in it. CALL statements are
allowed in a DO ... DONE loop.

Built-In Variables

The intent of built-in variables is to make system-wide setting values available to the developer. For
example, INTEGRATION TIME SECONDS establishes an integration time of 1 second by default. To
change this, assign it a new value prior to taking a spectrum reading. Those that are marked as constants
are not user-modifiable and are meant to convey values to system functions. For example, in specifying
lamp intensity the value ALLBULBS means “set all bulbs in the light source to the value” while BULBI
specifies the first bulb in the source.

Built-in Variables for Use

NOTE: Variables in red are important settings for the spectrometer and should be set by the developer to
alter the default behavior.

Variable Type Constant Typical Use/Value
NONE TEXT YES "NONE"
LED_LAMP_TYPE INT_16 YES 6
UV_VIS_LAMP_TYPE INT_16 YES 4
VIS_NIR_LAMP_TYPE INT_16 YES 5
AVERAGES INT_16 0
BOX_CAR INT_16 0
LAMBDA_LOW INT_16 0
LAMBDA_HIGH INT_16 0
LIGHT INT_16 0
RESPONSE_TIMEOUT_SECONDS INT_16 5
NUMBER_OF_PIXELS INT_16 2048
NON_LINEARITY INT_16 0

013-RD000-000-12- 201010 7

2: Jaz Scripting Engine Architecture

Variable Type Constant Typical Use/Value
ELECTRIC_DARK INT_16 0

STRAY_LIGHT INT_16 0
DISPLAY_BRIGHTNESS INT_16 0
DISPLAY_WIDTH INT_16 8
DISPLAY_PRECISION INT_16 3
INTEGRATION_TIME_SECONDS INT_32 1
INTEGRATION_TIME_NANOSEC INT_32 0
STROBE_DELAY_USEC INT_16 0
LAMP_CONTROL INT_16 0
SPECTROMETER_CHANNEL_NUMBER [INT_16 0
PROCESSING_FLAG INT_16 YES 2
STROBE_ENABLE INT_16 1
SPECTROMETER TEXT YES "SPECTROMETER"
LAMP TEXT YES "LAMP"

BULB1 INT_16 YES 1

BULB2 INT_16 YES 2

ALLBULBS INT_16 YES 3

013-RD000-000-12- 201010

Chapter 3

Installation

Overview

The JSL can be run under Jaz, Linux or Windows and installed from either the JSL CD or from the Ocean
Optics Software Downloads page. See Operating System Support to determine if your computer
operating system is supported by JSL.

Retrieving from a CD

Your JSL software is shipped to you from Ocean Optics on a CD. You will need the password located on
the jacket of the CD containing your JSL software to complete the installation.

» Procedure
1. Insert the CD that you received containing your JSL software into your computer.

2. Browse to the appropriate JSL set-up file for your computer and double-click it to start the
software installation. Set-up files are as follows:
— Windows: Scriptor-1.0-windows-installer.exe
— Linux: Scriptor-1.0-Linux-installer.bin

3. Save the software to the desired location. Your JSL password is located on the CD jacket.

— Windows: The default installation directory is C:\Program Files\Ocean Optics\JSL.
The installer wizard guides you through the installation process. The JSL icon location is
Start | Programs | Ocean Optics | JSL | Scriptor Launcher and the current user’s
desktop.

— Linux: The default installation directory is your home directory/Ocean Optics.

013-RD000-000-12- 201010 9

http://www.oceanoptics.com/technical/softwaredownloads.asp

3: Installation

Downloading from the Ocean Optics Website

Installing on a Windows Platform
Total download is approximately 3.4 MB.

» Procedure
1. Close all other applications running on the computer.
2. Start Internet Explorer.

2. Browse to the Software Downloads page on the Ocean Optics website at
http://www.oceanoptics.com/technical/softwaredownloads.asp.

3. Click on the JSL software for your Windows operating system.

4. Save the software to the desired location. The default installation directory is C:\Program
Files\Ocean Optics\JSL. The installer wizard guides you through the installation process. Your
JSL password is located on the jacket of the CD containing the JSL software. The JSL icon
location is Start | Programs | Ocean Optics | JSL | Scriptor Launcher and your desktop.

Installing on a Linux Platform
Total download is approximately 3.9 MB.

» Procedure

1. Download the Linux installer from the Software Downloads page on the Ocean Optics website at
http://www.oceanoptics.com/technical/softwaredownloads.asp.

2. Follow the wizard prompts. Your JSL password is located on the jacket of the CD containing the
JSL software. The default installation directory is your home directory/Ocean Optics.

Transferring JSL to Jaz

To run JSL scripts on the Jaz directly (without the use of a computer) it is necessary to transfer the JSL
application (Scriptor) and your desired scripts to a specially organized SD card. To simplify this process,
Ocean Optics provides a ZIP file that contains the files and directories necessary to use the JSL directly
on the Jaz. This ZIP file is password-protected using the same password as the installers. This ZIP file
should be extracted and its contents copied onto the SD card such that the boot directory in the ZIP file is
copied to the top (root) directory of the SD card. The Jaz will not recognize the JSL if the ZIP file is
copied directly to the SD card without first extracting it. Note that multiple SD cards can be set up in this
way and a freshly formatted SD card can be reinitialized for use with the JSL by following this

procedure. The ZIP file may contain sample scripts to illustrate where they should be placed and how they
may be named; these should be replaced with the desired scripts.

See your Jaz Installation and Operation Manual for instructions on using an SD card with Jaz (see
Product-Related Documentation).

10 013-RD000-000-12- 201010

http://www.oceanoptics.com/technical/softwaredownloads.asp
http://www.oceanoptics.com/technical/softwaredownloads.asp

Chapter 4

Windows Scriptor Launcher

Introduction

Scriptor Launcher provides a graphical interface for Ocean Optics’ Jaz Scripting Language Engine (JSL)
when used with Windows. The scripting engine is the program that parses and executes user scripts for
Jaz. By using the launcher, you need not interact with the system at a command line level. The launcher
provides the means for observing the results from a tethered Jaz program by either viewing the console
output or capturing the same data in a ‘capture’ file. A capture file is a plain text file which holds all the
information generated by the scripting engine during a run. You may save this file for future reference.

Configuration

Installation of the Scriptor Launcher merely requires a copy of the file ScriptorLauncher.exe in the
location of your choice on your local file system. It is suggested that you store the application in the
default directory named C:\Program Files\Ocean Optics\JSL. You may wish to create a desktop shortcut
to make application launch more convenient.

Prerequisites

The script launcher runs on Windows 7, XP, and Vista. The launcher should be installed in the same
directory as the scripting engine, although this is not essential.

System requirements include the following:

e Computer running Windows 7, XP or Vista
e The Scriptor.exe scripting engine installed
e The scriptor launcher application installed

e To view captures from the application, WordPad.exe must be on your path. WordPad is used to
view the output of your scripting section. See your Microsoft Windows manual for path setting
tasks.

013-RD000-000-12- 201010 11

4: Windows Scriptor Launcher

Running the Application

Scriptor Launcher Main Window

Double-click the launcher icon to display the application window.

The fields are populated with the settings last used so that you need only change the parameters necessary
for the current operation.

The application window is divided into four sections:

Script Options
Tethered Jaz Network Settings

Script Settings
Run Section

12

013-RD000-000-12- 201010

Script Options

Option Meaning

Verbose Corresponds to the -v option and provides the most detailed output

Compile Only Corresponds to the -c option and compiles but does not run the script

Trace Execution Corresponds to the -t option and provides a full script engine output

Capture Output Captures script engine output in the file you specify as the capture file and
will open the capture file in WordPad.exe when script execution
terminates.

Tethered Jaz Network Settings

This section allows you to set the [P address of the attached Jaz unit and change the port number. Usually,
only the IP address needs to be set. Changing the port number arbitrarily may result in loss of function.

The IP address control allows you to enter the IP address as 4 octets. It will not allow the entry of illegal
values. Consult your system administrator for additional network information. Leave the port number at
6626 unless you have been told otherwise by Ocean Optics technical support.

Script Settings

This section allows you to specify the location of your script and the location of the scripting engine. The
buttons to the right of each field allow you to select the files graphically. The scripting engine is named
Scriptor.exe (unless you have renamed it). The Keep process window open after run completion
checkbox allows you to view the raw output of the script engine without capturing it to a file. Normally,
the process window closes automatically as soon as the engine execution is finished. If this box is
checked, the launcher will not be available until the process window is manually closed. Also, this option
is incompatible with the capture option so only one of these features may be in force at any time. You
may run the script engine without capture or watching the process window. In this case, no data reflecting
the current run will be retained.

Run Section

This section has two buttons and a view: Press Run to launch the scripting engine and Quit to end the
application. All pertinent settings are retained by the system so that most configuration tasks won’t have
to be repeated on every run. The Command view shows you what the command line would look like if
launched manually.

013-RD000-000-12- 201010 13

4: Windows Scriptor Launcher

14 013-RD000-000-12- 201010

Chapter 5
Using the Jaz Scripting Engine

Overview

The scripting engine is a program named Scriptor. Scriptor contains all the functionality needed to
communicate with a Jaz unit and execute user scripts. Scriptor has several arguments that may be passed
to it on the command line to modify its behavior.

The scripting engine has two script file input modes:
¢ In one mode, the names of the script(s) are provided on the command line. The engine will
attempt to execute each script in order of appearance on the command line.

¢ In the second mode, a flag is passed with a text string naming a directory from which the engine
should fetch scripts.

In either mode, each script will execute independently of any other scripts that have been or will be
executed. Minimal use would pass the name of a single script on the command line.

The flags are specified on the command line as a hyphen followed by a letter. A flag may take no
arguments or it may take one. The format follows POSIX program invocation conventions. Flags may
appear in any order but the name of scripts must follow all flags or an error will be reported.

The invocation format is: Scriptor <flags and options> <script name (s)>

Engine Arguments

Flag Arguments Meaning

Y none verbose output -- enhances the trace option

-t none trace -- displays all engine actions

-C none compile only -- will check script for syntax but will not

attempt to execute

-h IP address of Jaz Unit Specifies the IP address to contact the Jaz unit. If not
) provided, engine assumes that the Jaz components are
Default: 127.0.0.1 local. See Tethered Mode.

013-RD000-000-12- 201010 15

5: Using the Jaz Scripting Engine

Flag Arguments Meaning

-p IP Port number of Jaz unit | Specifies the IP port the Jaz unit is listening on. If not
Default: 6626 provided, engine uses the default.

-f directory name If the engine is to fetch scripts from a directory then this
flag specifies the directory to fetch from.

Tethered Mode

In this mode, the engine runs on a PC and is connected to a Jaz unit via ethernet. All functionality is
available on the Jaz. This provides an ideal way to author and test scripts prior to deployment. In this
mode, you must specify the -h option for Jaz address. The port option need not be used if the Jaz unit is in
its default setup. All trace and operational information is available if the -t and optionally -v flags are
used. If the script name is my_script and we are running in Tethered mode, the command line might look
like this:

Scriptor -t -v -h 192.168.0.23 my script

When a script has been tested, it can be written to an SD memory card for use directly on Jaz (see Jaz
Mode). When Jaz starts up it looks for files in its special directory. If any are found, a loader presents the
files in a scrolling list. When a list item is selected, Scriptor will be invoked with the selected script name.
Running a script from the SD card on Jaz is known as running in Jaz mode.

Jaz Mode

In Jaz mode, the script to be run is stored in a specific directory on an SD memory card. Note that in this
mode, the only way to interact with a user is through menus and button presses. No other tracing or
debugging output is generated or available. Only debugged scripts should be run this way. If Jaz is to be
subsequently used in its default mode without being restarted, then scripts should be written so that the
top menu has a selection that allows the user to exit the script. Otherwise, the SD card must be removed
and Jaz restarted.

Files must be written to the SD card in the following layout:
/boot/Scriptor/Scriptor Executable for Jaz

Scriptl.txt Can use any filename, but must have .txt extension
Script2.txt

/boot/boot-apps.txt Contains one line: Scriptor

See the sample SD card layout provided in the zip file.

16 013-RD000-000-12- 201010

Chapter 6

Functions Reference

ACOS

Syntax: ACos (A, B)

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B REAL variable B = arccos(A)

Adapt

Syntax: Adapt (Channel)

Arguments

Special Considerations

Channel Integer Desired spectrometer channel

The algorithm begins with the built-in variables INTEGRATION _TIME SECONDS and
INTEGRATION_TIME NANOSEC as the integration time. It adjusts up or down by 100 each time a
failure occurs until a maximum/minimum limit is reached or the response to the request is successful. The
built-in variable assumes the value at that time.

Setting this value prior to making the call will allow for faster convergence.

Add

Syntax: Add (A, B, C)

013-RD000-000-12- 201010 17

6: Functions Reference

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Spectral A + B Pixel Values
Intent:

Add the pixel values of spectra A and B and store in C

ASIN

Syntax: ASin (A, B)

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B REAL variable B = arcsin(A)

AssignLampType

Syntax: AssignLampType (LAMP CONSTANT, X)

Arguments

Name

LAMP_CONSTANT

Type

INT_16

Special Considerations

Built-in like UV_VIS

Integer variable

Intent:

If a lamp of the given type is present, set its X to its index number so that X can be used in controlling

the lamp. X = -1 if an instance of the lamp type is not present.

013-RD000-000-12- 201010

6: Functions Reference

Call -- UserFunctioninvocation

Syntax: Call MyProcedure

Arguments

Special Considerations

MyProcedure User-defined procedure A subroutine call

Intent:

To invoke user-defined code as a unit of execution.

Check

Syntax:

Check (DeviceClass, Instance,Setting RelOp Value

Check (DeviceClass, Instance,Setting IN [low,high]
Check (DeviceClass, Instance,Setting OUTSIDE [low,high]
Check (DeviceClass, Instance,Setting IN {a,b,c,..,}
Check (DeviceClass, Instance,Setting OUTSIDE {a,b,c,..,}

Check (DeviceClass, Instance,Setting OneOf {a,b,c,..,}

Arguments
Name Type Special Considerations
DeviceClass SPECTROMETER, LAMP Built-in Values
Instance INT_16 or literal Channel or unit number
Setting INT_16 or literal Built-In Values
Relop One of <,> <> = >= <=
Value INT_16 or literal

013-RD000-000-12- 201010 19

6: Functions Reference

Name Type Special Considerations

IN Operator for membership

OUTSIDE Operator for non-membership

[a,b] Numeric range (real or integer) A<B

{a,b,c} Set of discrete values No imposed order
Intent:

Check that a system attribute, feature or device is or is not present or is sufficient to allow script to
proceed. If a check statement fails, the script terminates.

CloseFile

Syntax: CloseFile (F)

Arguments

Special Considerations

F FILE

Intent:

Finalizes access to a file.

Comment

Syntax: //This is a comment

A comment is any text following '//' to the end of a line.

Special Considerations

1 Comment start /I to end of line ignored in script

20 013-RD000-000-12- 201010

6: Functions Reference

Comp

Syntax: Comp (A, B, C)

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Real variable C = Sum(Ai - Bi)
Intent:

Compute the sum of the pixel value differences of A and B and store in C.

Compabs

Syntax: CompAbs (A, B, C)

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Real variable C = Sum(Abs(Ai - Bi))
Intent:

Compute the sum of the absolute values of the pixel values of A and B and store in C.

COS

Syntax: Cos (A, B)

013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B REAL variable B = cos(A)

Display

Syntax: Display (Legend,Value,Units)

Arguments
Name Type Special Considerations
Legend TEXT
Value REAL
Units TEXT
Intent:

Display output value message on Jaz OLED display.

Displaymsg

Syntax: DisplayMsg (Message)

Arguments

Message

TEXT

Special Considerations

Intent:

Show the message on the Jaz OLED display.

22

013-RD000-000-12- 201010

6: Functions Reference

Do ... Done

Syntax: Do V SV,EV,SS Done
Example:

Do I 1,10,1

Sum := Sum + I

Done

This is the basic loop iteration structure where the loop body is delimited by the keywords DO and

DONE.

Arguments
Name Type Purpose
\Y, integer Iteration variable
SV constant initial value of iteration variable
EV constant value of variable to terminate loop
SS constant increment V by other than 1

Duplicate

Syntax: Duplicate (A, B)

Arguments
Name Type Special Considerations
A Spectral
B Spectral B=A

EXP

Syntax: Exp (A, B)

013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B REAL variable B = e to the power of A

GetintegrationTime

Syntax: GetIntegrationTime (R)

Arguments

REAL variable

Special Considerations

alue of
INTEGRATION_TIME_SECONDS +
INTEGRATION_TIME_NANOSECS

Intent:

Get current value of Integration Time variables.

GetLamplntensity

Syntax: GetLampIntensity (L,V,M)

Arguments
Name Type Special Considerations
L Integer literal or variable Lamp unit's number
\Y, Integer variable Intensity value
M BULB1, BULB2, ALLBULBS Target bulb of the source to effect
24 013-RD000-000-12- 201010

6: Functions Reference

Intent:

Fetch current value of light source bulb intensity setting.

GetLampShutter

Syntax: GetLampShutter (L, V)

Arguments

Name

L

Type

Integer variable or literal

Special Considerations

Lamp unit's number

Integer variable

Intent:

Get the current light source shutter setting.

GetSpectrum

Syntax: GetSpectrum (Index, A)

Arguments
Name Type Special Considerations
Index INT_16 constant or literal number Device must exist
Or Or
FILE variable File must exist and be opened
A Spectral Spectral data read

Goto

Syntax: Goto Label

013-RD000-000-12- 201010

6: Functions Reference

Arguments

Label

A labeled statement in the script

Special Considerations

Labels are local to main or a user-
defined procedure

If

Syntax:

If (conditional expression)

If (conditional expression)

If (conditional expression) HALT

Arguments

Name

Conditional expression

Type

Boolean expression

GOTO Label

Procedure Name

Special Considerations

Example (A <> B)

Label

User defined Label

Procedure Name

Name of a user-defined
procedure

Call user expression and return

HALT

Termination of script

Intent:

Conditional execution of script statements.

Label

Syntax: Label <Label Name>

26

013-RD000-000-12- 201010

6: Functions Reference

Arguments

Special Considerations

Label Name Tagged instruction in the script Target for Goto expressions
defined by the user

LocateWavelength

Syntax: LocateWavelength (A, B, C)

Arguments
Name Type Special Considerations
A Spectral
B INT_16 or REAL variable or literal
C INT_16 literal
Intent:

Finds location in spectrum of B wavelength.

Log

Syntax: Log (A, B)

Arguments
Name Type Special Considerations
A Spectral
B Spectral Bi = Log10(Ai) iff Ai >0

Bi = INF Otherwise

013-RD000-000-12- 201010 27

6: Functions Reference

Intent:

Compute the element-wise logarithm base 10 of A and store in elements of B. If an element of A is
<0, then the value stored in INF (infinity) and is not computationally useful.

Log10

Syntax: Logl0 (A, B)

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal Greater than 0
B Real B =Log10(A)

Intent:

Compute the base 10 log of the scalar variable, A. Do not confuse this with LOG(), which operates
only on spectral data.

LogN

Syntax: LogN (A, B)

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal A>0
B REAL variable B =1In(A)

Mult

Syntax: Mult (A, B, C)

28 013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Spectral Ci=Ai*Bi
Intent:

Compute the DOT-PRODUCT of A,B and store in C.

Norm

Syntax: Norm (A, B)

Arguments
Name Type Special Considerations
A Spectral
B Spectral Bi = Ai/Max(Ai)

Intent:

Normalize the pixel values of A by dividing through by the maximum pixel value in A and store the
ratio in B. If Max(A) is zero then the result is INF and is not computationally useful.

OnButtonClick

Syntax: OnButtonClick (ButtonSelection, TimeToWait)

013-RD000-000-12- 201010 29

6: Functions Reference

Arguments

Name Type Special Considerations

ButtonSelection INT_16 Variable holding user's selection and
-1 if timed out or some other
selection activity was done.

If TimeToWait is zero and a button
press occurred the keycode value
+1000 will be returned as the
ButtonSelection.

TimeToWait INT_16 The number of seconds the script
should wait for user input.

If zero is sent as the TimeToWait
then the command will return -1 until
a button press has occurred and
then the keycode value +1000 will
be returned.

Intent:

To interact with the user via the Jaz menu screen and the direction (arrow) buttons.

OnError

Syntax: OnError (TextMessage) GUI Function

Arguments

Special Considerations

TextMessage Text N

OnErrorGoto

Syntax:
OnErrorGoTo Label
OnErrorGoTo Procedure

OnErrorGoTo HALT

30 013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
Label A labeled statement in the script Labels are local to main or a user-

defined procedure
Procedure The name of a user-defined
procedure

HALT Terminate the script

Intent:

The engine maintains a global error indicator that is set whenever a consistency error is detected and
referenced by this function to determine whether to take the action specified.

OpenfFile

Syntax: OpenFile (F,Mode) variant: OpenFile (F, Mode, Sequence)

Arguments
Name Type Special Considerations
F FILE variable
Mode INT_16 constant ForRead = file is for output

ForWrite = file is for input

013-RD000-000-12- 201010

31

6: Functions Reference

Name Type Special Considerations
Sequence INT_16 variable or literal Use if this parameter is not
mandatory.

If used and F was declared with
name myfile.txt, then the actual file
name becomes myfile.txt.nnn

where :

nnn is a three digit numerical field
derived from this argument.

User is responsible for setting,
incrementing and contents of this
parameter.

Intent:

Registers file variable with operating system controlled file. The sequence number allows a series of
related measurements to be saved to files having a common base name.

Pause

Syntax: Pause (Seconds)

Arguments

Special Considerations

Seconds INT_16 Number of seconds to pause the
script execution

POW

Syntax: Pow (A, B, C)

32 013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B INT_16 or REAL variable or literal
C REAL C = A to the power of B

Prompt

Syntax: Prompt (Message)

Arguments

Special Considerations

Message TEXT

Intent:

Display a prompt message on the Jaz OLED display (usually to prompt the user to perform an action).

Ratio

Syntax: Ratio (A, B, C)

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Spectral Ci = Ai/ Bi iff Ci <>0
Ci = INF otherwise
Intent:

Compute the ratio of elements in A and B and store as elements of C.

013-RD000-000-12- 201010 33

6: Functions Reference

ReadRealVector

Syntax: ReadRealVector (F,V, Length)

Arguments

Name Type Special Considerations

F FILE

\Y, Real Array variable

Length Integer variable or literal Number of elements to read
Intent:

Read in a vector of real values from a user-supplied file. Useful in creating tables, references, lists,
etc.

ReadTable

Syntax: ReadTable(FileVar,TableVar,NumRows,NumCols)

Arguments

Name Type Special Considerations

FileVar FILE Must have been opened with
OpenFile()

TableVar TABLE #rows and #cols specified in
declaration

NumRows INT_16 Input file must match this
specification

NumCols INT_16 Input file must match this
specification

34 013-RD000-000-12- 201010

6: Functions Reference

Intent:

To read in a 2-dimensional array of real numbers from a file. The array columns represent reference
spectra for use in pattern matching with a sample spectrum. The number of rows will typically be
2048, which is the default length of a spectrum.

Savereading

Syntax: SaveReading (F,Legend, Index,Units Text)

Arguments
Name Type Special Considerations
F FILE Must be ForWrite
Legend TEXT Like “Spot Value”
Index Integer variable or literal Index into pixel values
Units TEXT Like “nM or Angstroms”
Intent:

Put human-readable text into a file.

Example:

SaveReading (MyFile, “My Reading Text:” , Variable, “nm/s Units Text”)

Scale

Syntax: Scale (<arithmetic expression>,A)

Arguments
Name Type Special Considerations
Arithmetic expression Variable, constant or an expression | Serves as multiplier
that evaluates to a numeric value
A Spectral A=z"A

013-RD000-000-12- 201010 35

SetDisplayPrecision

Syntax: SetDisplayPrecision (W, P)

Arguments

Special Considerations

w INT_16 W is width of numeric field

P INT_16 P is number of digits precision

Intent:

To set the display precision of real numbers.

SetintegrationTime

Syntax: SetIntegrationTime (R)

Arguments

Special Considerations

R REAL variable or literal Set value of
INTEGRATION_TIME_SECONDS +
INTEGRATION_TIME_NANOSECS

Intent:

Set value of Integration Time variables.

SetLamplntensity

Syntax: SetLamplntensity(L, M,V)

36 013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
L Integer variable or literal Lamp unit's number
M BULB1, BULB2, ALLBULBS Target bulb of the source to effect
\Y Integer variable or literal Setting (must be in range)
Intent:

Change the intensity of bulb in the light source by a given amount.

SetLampShutter

Syntax: SetLampShutter(L,V)

Arguments
Name Type Special Considerations
L Integer variable or literal Lamp unit's number
Vv Integer variable or literal

Intent:

Set the current light source shutter setting.

ShowGraph

Syntax: ShowGraph (S)

Arguments

Special Considerations

S Spectral

Intent:

To display a graph of spectrum S on Jaz.

013-RD000-000-12- 201010 37

6: Functions Reference

ShowMenu

Syntax: ShowMenu (s1{,s2,s3,s4})
Where: s = a string or a text variable.
s2 through s4 are optional and may be omitted for a 1 line menu.

Each string constitutes a line on the display and is associated automatically with the
navigation buttons on the Jaz unit.

Arguments
Name Type Special Considerations
s1 TEXT Mandatory field
s2 ...s4 TEXT Optional arguments
Intent:

To display user input prompts on the Jaz screen. OnButtonClick function is usually used with this
function to retrieve the user's selection.

SIN

Syntax: Sin (A, B)

Arguments
Name Type Special Considerations
A INT_16 or REAL variable or literal
B REAL variable B = sin(A)

Sub

Syntax: Sub (A, B, C)

38 013-RD000-000-12- 201010

6: Functions Reference

Arguments
Name Type Special Considerations
A Spectral
B Spectral
C Spectral A -B Pixel values
Intent:

Subtract the pixel values of spectra A and B and store in C.

Trim

Syntax: Trim (A, B, From, To)

Arguments
Name Type Special Considerations
A Spectral
B Spectral B is all values of A from FROM to
TO
From Low wavelength value
To High wavelength value

WaveLength

Syntax: WaveLength(A,V,B)

013-RD000-000-12- 201010

6: Functions Reference

Arguments

Name Type Special Considerations

A Spectral

\Y Integer value or variable

B Real Wavelength of pixel at location V
Intent:

To get the wavelength corresponding to a pixel location.

WriteFile

Syntax:
WriteFile (F, X)
WriteFile (F,A,M,N)

Arguments

Name Type Special Considerations

F FILE

X Variable Any type supported

A Spectral

M Low index Literal or variable

N High Index Literal or variable
Intent:

Send data to user-defined file.

40

013-RD000-000-12- 201010

6: Functions Reference

WriteSpectrum

Syntax: WriteSpectrum(F,A)

Arguments
Name Type Special Considerations
F FILE Type determines the format of the
output (wavelength,pixel value)
A Spectral
Intent:

Write spectral data to user-defined file.

013-RD000-000-12- 201010 41

6: Functions Reference

42 013-RD000-000-12- 201010

Appendix A
Example Scripts

Bare Script Template

SCRIPT Testingl

VERSION 1.0.0

VARIABLES //////// /1717777777777 77777777777 77777777777777777
//

L7177 700777777007 777 7777777777777 777777777777777777777

END //variables

CONSTANTS //////// /1711171777177 7777777777777777777771777777
//
L7771 7 7770007777777 77777777777 7777777777777777777

END //constants

START ////////77 7117777777777 777777777777777777777777777
//
LITT7 7100777700077 77777777777 7777777777777777777777777

END
N N,
STOP

Complete Example Script -- (Demonstrates
syntax)

This example demonstrates syntax.

013-RD000-000-12- 201010 43

A: Example Scripts

A script must have a name and a 3-digit version number. As the product evolves, new script engines will
be produced, so it is important that a script targeted for a later version is not sent to an earlier version
engine. The intention is that all script engines be backward compatible with version 1.0.0. The script
writer adjusts this version tag to guarantee a match between script engines and the script.

SCRIPT Simple test of scriptor
Version 0.0.1
VARIABLES

//
// File to store the Spectrum that we get

!/
testfilel FILE "testfilel.txt"™ ASCII

//
// SPECTRAL variable for the spectrum that we get from the Spectrometer

//
testspectrum SPECTRAL

//

// Channel that we are getting the spectrum from
//

channel INT 16

//

// Button choice variable

//

choice INT 16

//

// Variable to hold the Integration Time
//

integrationtime REAL

END

//

// Start of the Script

//

START

//

// Set variables

//

channel := 0

integrationtime := 0.0004

//

// Set the display precision
//

SetDisplayPrecision (8, 6)

44 013-RD000-000-12- 201010

A: Example Scripts

//

// Set the integration time

//

Display ("SettingS$Integration$time to$",integrationtime, "secs")
pause (2)

SetIntegrationTime (integrationtime)

//

// set a label so that we can return to this location.
//

LABEL TOP

//

//Display a message and get a spectrum

//

DisplayMsg ("Collecting$Spectrum")

pause (2)

GetSpectrum (channel, testspectrum)

//

// Open a file and save the Spectrum
//

OpenFile (testfilel,ForWrite)
WriteSpectrum (testfilel, testspectrum)
CloseFile(testfilel)

//

// Display the Spectrum that we just got and
// Pause so that it can be seen

//

ShowGraph (testspectrum)

Pause (3)

//

// Put up a menu for the user to see if they
// want to get another Spectrum or exit
ShowMenu ("Get another?","Exit")

OnButtonClick (choice, 30)

//

// If the user wants another spectrum goto the
// TOP Label otherwise exit

//

If (choice = 0) GOTO TOP

DisplayMsg ("Exiting")
Pause (5)

END
STOP

013-RD000-000-12- 201010

45

A: Example Scripts

N N Y,
//
//
LITT7 7100777700077 7 77777777777 777777777777777777

[PROCESS MYGETSPECTRUM]

MySendPacket [10] := -1956.0
RealDumb[19] := MySendPacket[10]
myname := "SPECTRUM"

LampIndex := 6

GetLampShutter (LampIndex, LampShutter)
SetLampShutter (LampIndex, 20)

END

STOP

pH Measurement Script

SCRIPT pH Module Pittcon
Version 0.3.1
Variables

MaxFile FILE "MaxFile.txt" csv
DarkFile FILE "DarkFile.txt" csv
LowFile FILE "LowFile.txt" csv
pH Save FILE "pH Save.txt" csv
UserSelection int 16
DarkSpectrum SPECTRAL
LowpHSpectrum SPECTRAL
MaxpHSpectrum SPECTRAL
SamplepHSpectrum SPECTRAL
QuickSpectrum SPECTRAL
FiveSpectrum SPECTRAL
SixSpectrum SPECTRAL
SevenSpectrum SPECTRAL
EightSpectrum SPECTRAL
LowpHSpectrumDark SPECTRAL
MaxpHSpectrumDark SPECTRAL
SamplepHSpectrumDark SPECTRAL

QuickSpectrumbDark SPECTRAL

46

013-RD000-000-12- 201010

A: Example Scripts

FiveSpectrumbDark SPECTRAL
SixSpectrumbDark SPECTRAL
SevenSpectrumbDark SPECTRAL
EightSpectrumbDark SPECTRAL
pH REAL

LowPeak REAL
LowIntensityPeak INT 16
LowIntensityBase INT 16
SampleIntensityPeak INT 16
SampleIntensityBase INT 16
SamplePeakRatio REAL
SampleBaseRatio REAL
SamplePeakAbsorbance REAL
SampleBaseAbsorbance REAL
SampleAbsorbance REAL
MaxIntensityPeak INT 16
MaxIntensityBase INT 16
MaxPeakRatio REAL
MaxBaseRatio REAL
MaxPeakAbsorbance REAL
MaxBaseAbsorbance REAL
MaxAbsorbance REAL
QuickIntensityPeak INT 16
QuickIntensityBase INT 16
QuickPeakRatio REAL
QuickBaseRatio REAL
QuickPeakAbsorbance REAL
QuickBaseAbsorbance REAL
QuickAbsorbance REAL
FiveIntensityPeak INT 16
FiveIntensityBase INT 16
FivePeakRatio REAL
FiveBaseRatio REAL
FivePeakAbsorbance REAL
FiveBaseAbsorbance REAL
FiveAbsorbance REAL
SixIntensityPeak INT 16
SixIntensityBase INT 16

SixPeakRatio REAL

013-RD000-000-12- 201010

47

A: Example Scripts

SixBaseRatio REAL
SixPeakAbsorbance REAL
SixBaseAbsorbance REAL
SixAbsorbance REAL
SevenIntensityPeak INT 16
SevenIntensityBase INT 16
SevenPeakRatio REAL
SevenBaseRatio REAL
SevenPeakAbsorbance REAL
SevenBaseAbsorbance REAL
SevenAbsorbance REAL
EightIntensityPeak INT 16
EightIntensityBase INT 16
EightPeakRatio REAL
EightBaseRatio REAL
EightPeakAbsorbance REAL
EightBaseAbsorbance REAL
EightAbsorbance REAL
LogArgument REAL

LogTerm REAL
LogArgumentFive REAL
LogTermFive REAL
LogArgumentSix REAL
LogTermSix REAL
LogArgumentSeven REAL
LogTermSeven REAL
LogArgumentEight REAL
LogTermEight REAL
LogArgumentRefresh REAL
LogTermRefresh REAL
PassCount int 16
UserChoice INT 16

pK REAL

pK1l REAL

pK2 REAL

pK3 REAL

pK4 REAL

pKSum REAL

Slope REAL

48

013-RD000-000-12- 201010

A: Example Scripts

Slopel REAL

Slope2 REAL

Slope3 REAL

Slope4 REAL

Slope5 REAL

Slope6 REAL

SlopeSum REAL

imaxl INT 16
MaxIntensityPeakl INT 16
LowIntensityPeakl INT 16
MaxPeakRatiol REAL
MaxPeakAbsorbancel REAL
QuickIntensityPeakl INT 16
QuickPeakRatiol REAL
QuickPeakAbsorbancel REAL
QuickAbsorbancel REAL
FiveIntensityPeakl INT 16
FivePeakRatiol REAL
FivePeakAbsorbancel REAL
FiveAbsorbancel REAL
SixIntensityPeakl INT 16
SixPeakRatiol REAL
SixPeakAbsorbancel REAL
SixAbsorbancel REAL
SevenIntensityPeakl INT 16
SevenPeakRatiol REAL
SevenPeakAbsorbancel REAL
SevenAbsorbancel REAL
EightIntensityPeakl INT 16
EightPeakRatiol REAL
EightPeakAbsorbancel REAL
EightAbsorbancel REAL
SampleIntensityPeakl INT 16
SamplePeakRatiol REAL
SamplePeakAbsorbancel REAL
SampleAbsorbancel REAL

i int 16

Lightl INT 32

LightSpectrum SPECTRAL

013-RD000-000-12- 201010

49

A: Example Scripts

LightPeak INT 16
MaxPeak INT 16

QuickPeak INT 16
FivePeak INT 16
SixPeak INT 16

SevenPeak INT 16
EightPeak INT 16

SamplePeak INT 16

END

CONSTANTS

TimeOutSeconds = 60

MaxPasses = 100
END

START

PassCount := 0

SetDisplayPrecision (6,2)

// Set Integration Time, Averaging, BoxCar, and default pK and Slope

SPECTROMETER CHANNEL NUMBER := 0
INTEGRATION TIME SECONDS := 0
INTEGRATION TIME NANOSEC := 3000
AVERAGES := 15

BOX CAR := 15

pK := 6.0

Slope := 1.5

// Power Lamp

DisplayMsg ("Light adjustment$in progress")

Pause (2)

SetLampShutter (0,1)

50 013-RD000-000-12- 201010

A: Example Scripts

Lightl := 4000

LABEL LightLoop
SetLampIntensity (0, ALLBULBS,Lightl)
GetSpectrum (0, LightSpectrum)

LocateWavelength (LightSpectrum, 566, LightPeak)
IF (LightSpectrum[LightPeak] > 32000) GOTO Again
GOTO EndLight

LABEL Again
Lightl := Lightl - 100
SetLampIntensity (0, ALLBULBS, Lightl)

GOTO LightLoop

LABEL EndLight
DisplayMsg ("Light adjustmentS$complete")

Pause (2)

Display ("Max Int = ",LightSpectrum[LightPeak],"")

Pause (2)
// Main User Interface
Label Top

CALL MainMenu

I1f (UserChoice = 0) GOTO Standardize

If (UserChoice 1) GOTO VIEW
If (UserChoice = 2) GOTO RefreshpK

GOTO QUIT

LABEL Standardize
CALL GetStandards

GOTO TOP
LABEL View
Call ViewpH

GOTO TOP

LABEL RefreshpK

013-RD000-000-12- 201010

51

A: Example Scripts

Call Refresh
GOTO TOP

LABEL QUIT

DisplayMsg ("Ending$Session")

Pause (2)

END

//Menu to standardize

[Process GetStandards]

LABEL TOP

ShowMenu ("Take Dark Ref","Take Low pH Ref","Take Max pH Ref","Back")

OnButtonClick (UserSelection, TimeOutSeconds)

If (UserSelection =

If (UserSelection

If (UserSelection =

If (UserSelection

LABEL Dark
Call GetTheDarkRef
GOTO TOP

LABEL Low

Call GetTheLowRef

GOTO TOP

LABEL Max

Call GetTheMaxRef

GOTO TOP

LABEL EXIT

END

[Process MainMenu]

PassCount := 0

GOTO Dark
GOTO Low
GOTO Max

GOTO EXIT

52

013-RD000-000-12- 201010

A: Example Scripts

LABEL TOP

ShowMenu ("Standardize", "View pH","Refresh pK","Exit")

OnButtonClick (UserSelection, TimeOutSeconds)
If (UserSelection <> 0) GOTO Checkl
UserChoice := 0

GOTO EXIT

LABEL Checkl
If (UserSelection <> 1) GOTO Check2
UserChoice := 1

GOTO EXIT

LABEL Check?2
If (UserSelection <> 2) GOTO Check3
UserChoice := 2

GOTO EXIT

LABEL Check3
If (UserSelection <> 3) GOTO Bummer
UserChoice := 3

GOTO EXIT

LABEL bummer

PassCount := PassCount + 1

If (PassCount > MaxPasses) GOTO QUIT
DisplayMsg ("Please select$something™)
Pause (10)

GOTO TOP

LABEL QUIT
UserSelection := -1
LABEL EXIT

END

[PROCESS GetTheDarkRef]

// Turns off lamp, takes dark reference, repowers lamp,

SetLampIntensity (0, ALLBULBS,0)

SetLampShutter (0, 0)

adjusts IntTime

013-RD000-000-12- 201010

53

A: Example Scripts

Pause (1)

GetSpectrum (0, DarkSpectrum)

DisplayMsg ("Taking Dark$Reference")
Pause (2)
SetLampShutter (0,1)

SetLampIntensity (0, ALLBULBS, Lightl)

END

[PROCESS GetTheLowRef]

// Prompts user to insert buffer sample, takes low reference
DisplayMsg ("pH = 1 Buffer$Should Be$Present")
Pause (3)

GetSpectrum (0, LowpHSpectrum)

Sub (LowpHSpectrum, DarkSpectrum, LowpHSpectrumDark)

Pause (3)

END

[PROCESS GetTheMaxRef]

/// Prompts user to insert buffer sample, takes max reference
DisplayMsg ("pH = 11 Buffer$Should Be$Present")
Pause (3)

GetSpectrum (0, MaxpHSpectrum)

Sub (MaxpHSpectrum, DarkSpectrum, MaxpHSpectrumDark)

OpenFile (MaxFile, ForWrite)
WriteSpectrum (MaxFile,MaxpHSpectrumDark)

CloseFile (MaxFile)

OpenFile (DarkFile, ForWrite)
WriteSpectrum (DarkFile, DarkSpectrum)

CloseFile (DarkFile)

54

013-RD000-000-12- 201010

A: Example Scripts

OpenFile (LowFile, ForWrite)
WriteSpectrum (LowFile, LowpHSpectrumDark)

CloseFile (LowFile)

LocateWavelength (MaxpHSpectrumDark, 750, MaxIntensityBase)

LocateWavelength (LowpHSpectrumDark, 750, LowIntensityBase)

MaxBaseRatio := MaxpHSpectrumDark[MaxIntensityBase] /
LowpHSpectrumDark[LowIntensityBase]

LOG10 (MaxBaseRatio, MaxBaseAbsorbance)

MaxBaseAbsorbance := - (MaxBaseAbsorbance)

LocateWavelength (MaxpHSpectrumDark, 618, MaxIntensityPeakl)

LocateWavelength (LowpHSpectrumDark, 618, LowIntensityPeakl)

MaxPeakRatiol := MaxpHSpectrumDark[MaxIntensityPeakl] /
LowpHSpectrumDark[LowIntensityPeakl]

LOG10 (MaxPeakRatiol, MaxPeakAbsorbancel)

MaxPeakAbsorbancel := - (MaxPeakAbsorbancel)
MaxAbsorbance := MaxPeakAbsorbancel - MaxBaseAbsorbance
Display("Max Abs = ",MaxAbsorbance,"")

Pause (2)

END

//Reset pK and Slope Menu

[PROCESS Refresh]

LABEL TOP

ShowMenu ("Manual Entry","Quick Reset","Full Reset","Back")

OnButtonClick (UserSelection, TimeoutSeconds)

If (UserSelection = 0) GOTO Manual

If (UserSelection 1) GOTO Quick

If (UserSelection = 2) GOTO Full

If (UserSelection = 3) GOTO EXIT

013-RD000-000-12- 201010

55

A: Example Scripts

GOTO EXIT

LABEL Manual

//Not yet a feature in Scriptor
DisplayMsg ("Not yet aSusable feature")
Pause (2)

GOTO TOP

//Quick single buffer calibration

LABEL Quick

DisplayMsg ("Make sure Dark, $Low, and Max RefsS$Shave been taken")
Pause (3)

DisplayMsg ("pH = 7 Buffer$Should Be$Present")

Pause (2)

GetSpectrum (SPECTROMETER CHANNEL NUMBER, QuickSpectrum)

Sub (QuickSpectrum, DarkSpectrum, QuickSpectrumDark)

iMaxl := 596
LocateWavelength (QuickSpectrumbDark, 750, QuickIntensityBase)

LocateWavelength (LowpHSpectrumDark, 750, LowIntensityBase)

QuickBaseRatio := QuickSpectrumDark[QuickIntensityBase] /
LowpHSpectrumDark[LowIntensityBase]

LOG10 (QuickBaseRatio, QuickBaseAbsorbance)

QuickBaseAbsorbance := - (QuickBaseAbsorbance)

QuickAbsorbance := 0

LABEL Loop2

iMaxl := iMaxl + 1

LocateWavelength (QuickSpectrumDark, iMaxl, QuickIntensityPeakl)

LocateWavelength (LowpHSpectrumDark, iMaxl, LowIntensityPeakl)

QuickPeakRatiol := QuickSpectrumDark[QuickIntensityPeakl] /
LowpHSpectrumDark[LowIntensityPeakl]

LOG10 (QuickPeakRatiol, QuickPeakAbsorbancel)

QuickPeakAbsorbancel := - (QuickPeakAbsorbancel)

56

013-RD000-000-12- 201010

A: Example Scripts

QuickAbsorbancel := QuickPeakAbsorbancel - QuickBaseAbsorbance
if (QuickAbsorbancel >= QuickAbsorbance) GOTO AssignQuick
If(iMaxl < 645) GOTO Loop2

GOTO Calculate2

LABEL AssignQuick

QuickAbsorbance := QuickAbsorbancel
QuickPeak := QuickIntensityPeakl
GOTO Loop2

LABEL Calculate?2

LogArgumentRefresh := QuickAbsorbance/ (MaxAbsorbance - QuickAbsorbance)
if (LogArgumentRefresh> 0.0) GOTO OK6

GOTO ABORT

Label OK6

LOG10 (LogArgumentRefresh, LogTermRefresh)
pK := -(1.9287 * LogTermRefresh) + 7.069
Slope := 11.19225 / pK

DisplayMsg ("Quick Reset$Successful")
Pause (2)

Display("pK = ",pK,"")

Pause (2)

Display ("Slope = ",Slope,"")

Pause (2)

GOTO TOP

Label ABORT

DisplayMsg ("Internal$Math$SERROR")

Pause (2)

GOTO TOP

//Full four buffer calibration

LABEL Full

013-RD000-000-12- 201010

57

A: Example Scripts

DisplayMsg ("Make sure Dark, $Low, and Max RefsS$Shave been taken")
Pause (3)

DisplayMsg ("You will need$pH 6 and 8S$buffers")

Pause (3)

LABEL FullMenu

ShowMenu ("pH = 6","pH = 8")

OnButtonClick (UserSelection, TimeOutSeconds)

If (UserSelection = 0) GOTO Six

If (UserSelection = 1) GOTO Eight

LABEL Six

DisplayMsg ("pH = 6 Buffer$Should Be$Present")

Pause (2)

GetSpectrum (SPECTROMETER CHANNEL NUMBER, SixSpectrum)

Sub (SixSpectrum, DarkSpectrum, SixSpectrumDark)

LocateWavelength (SixSpectrumbark, 750, SixIntensityBase)

LocateWavelength (LowpHSpectrumDark, 750, LowIntensityBase)

SixBaseRatio := SixSpectrumDark[SixIntensityBase] /
LowpHSpectrumDark[LowIntensityBase]

LOG10 (SixBaseRatio, SixBaseAbsorbance)

SixBaseAbsorbance := - (SixBaseAbsorbance)

LocateWavelength (SixSpectrumbDark, 618, SixIntensityPeakl)

LocateWavelength (LowpHSpectrumDark, 618, LowIntensityPeakl)

SixPeakRatiol := SixSpectrumDark[SixIntensityPeakl] /
LowpHSpectrumDark[LowIntensityPeakl]

LOG10 (SixPeakRatiol, SixPeakAbsorbancel)

SixPeakAbsorbancel := - (SixPeakAbsorbancel)
SixAbsorbance := SixPeakAbsorbancel - SixBaseAbsorbance
LogArgumentSix := SixAbsorbance/ (MaxAbsorbance - SixAbsorbance)

if (LogArgumentSix > 0.0) GOTO OK1l6

GOTO ABORT

LABEL OK16

LOG10 (LogArgumentSix, LogTermSix)

58

013-RD000-000-12- 201010

A: Example Scripts

GOTO FullMenu

LABEL Eight

DisplayMsg ("pH = 8 Buffer$Should Be$Present")

Pause (2)

GetSpectrum (SPECTROMETER CHANNEL NUMBER, EightSpectrum)

Sub (EightSpectrum, DarkSpectrum, EightSpectrumDark)
LocateWavelength (EightSpectrumbark, 750, EightIntensityBase)

LocateWavelength (LowpHSpectrumDark, 750, LowIntensityBase)

EightBaseRatio := EightSpectrumDark[EightIntensityBase] /
LowpHSpectrumDark[LowIntensityBase]

LOG10 (EightBaseRatio, EightBaseAbsorbance)

EightBaseAbsorbance := - (EightBaseAbsorbance)

LocateWavelength (EightSpectrumbDark, 618, EightIntensityPeakl)

LocateWavelength (LowpHSpectrumDark, 618, LowIntensityPeakl)

EightPeakRatiol := EightSpectrumDark[EightIntensityPeakl] /
LowpHSpectrumDark[LowIntensityPeakl]

LOG10 (EightPeakRatiol, EightPeakAbsorbancel)

EightPeakAbsorbancel := - (EightPeakAbsorbancel)
EightAbsorbance := EightPeakAbsorbancel - EightBaseAbsorbance
LogArgumentEight := EightAbsorbance/ (MaxAbsorbance - EightAbsorbance)

if (LogArgumentEight > 0.0) GOTO OK26
GOTO ABORT

LABEL OK26

LOG10 (LogArgumentEight, LogTermEight)

Slope := 2/ (LogTermEight - LogTermSix)
pK2 := 6 - (Slope*LogTermSix)
pK4 := 8 - (Slope*LogTermEight)

pKSum := pK2 + pK4
pK := pKSum / 2

DisplayMsg ("Calibration$successful")

Pause (2)

013-RD000-000-12- 201010

59

A: Example Scripts

Display ("pK = ",pK,"")

Pause (2)

Display("Slope = ",Slope,"")
Pause (2)

GOTO Top

LABEL EXIT

END

[PROCESS ViewpH]

// View pH Interface

Label TOP

ShowMenu ("Measure Sample","Save pH","Back")
OnButtonClick (UserSelection, TimeOutSeconds)
If (UserSelection = 0) GOTO CALCULATE IT

If (UserSelection = 1) GOTO Save pH

If (UserSelection = 2) CALL MainMenu

GOTO EXIT

LABEL CALCULATE IT
CALL CalculatepH

GOTO TOP

LABEL Save pH

OpenFile (pH Save,ForWrite)
SaveReading (pH Save,"pH = ",pH,"")
CloseFile (pH_Save)

DisplayMsg ("pH Saved")

Pause (2)

GOTO TOP

LABEL EXIT

END

60 013-RD000-000-12- 201010

A: Example Scripts

[PROCESS CalculatepH]

//Gets sample spectrum, calculates and displays pH, returns to previous screen

GetSpectrum (SPECTROMETER CHANNEL NUMBER, SamplepHSpectrum)

Sub (SamplepHSpectrum, DarkSpectrum, SamplepHSpectrumDark)

LocateWavelength (SamplepHSpectrumDark, 750, SamplelIntensityBase)

LocateWavelength (LowpHSpectrumDark, 750, LowIntensityBase)

SampleBaseRatio := SamplepHSpectrumDark[SampleIntensityBase] /
LowpHSpectrumDark[LowIntensityBase]

LOG10 (SampleBaseRatio, SampleBaseAbsorbance)

SampleBaseAbsorbance := - (SampleBaseAbsorbance)

LocateWavelength (SamplepHSpectrumDark, 618, SamplelIntensityPeakl)

LocateWavelength (LowpHSpectrumDark, 618, LowIntensityPeakl)

SamplePeakRatiol := SamplepHSpectrumDark[SampleIntensityPeakl] /
LowpHSpectrumDark[LowIntensityPeakl]

LOG10 (SamplePeakRatiol, SamplePeakAbsorbancel)

SamplePeakAbsorbancel := - (SamplePeakAbsorbancel)

SampleAbsorbance := SamplePeakAbsorbancel - SampleBaseAbsorbance

LogArgument := SampleAbsorbance/ (MaxAbsorbance - SampleAbsorbance)
if (LogArgument> 0.0) GOTO OK6
GOTO ABORT

Label OK6

LOG10 (LogArgument, LogTerm)

pH := (Slope * LogTerm) + pK
Display ("pH = ", pH, "")
Pause (5)

CALL ViewpH

GOTO EXIT

Label ABORT

DisplayMsg ("Internal$Math$SERROR")
Pause (2)

LABEL EXIT

END
STOP

013-RD000-000-12- 201010

61

A: Example Scripts

62 013-RD000-000-12- 201010

ACOS, 17

Adapt, 17

Add, 17

architecture, 3
arithmetic, 5

ASIN, 18
AssignLampType, 18

B

built-in variables, 7

C

Call MyProcedure, 19
Check, 19

CloseFile, 20
Comment, 20

Comp, 21

CompAbs, 21
constants, 3

COS, 21
cross-platform, 1

D

data types, 4
Display, 22
Displaymsg, 22
Do...Done, 23
document
audience, vil
purpose, vii
summary, vii
documentation, vii
DuplicateSpectrum, 23

E

Index

example scripts, 43
EXP, 23

flow control, 6
functions, 17
ACOS, 17
Adapt, 17
Add, 17
ASIN, 18
AssignLampType, 18
Call Myprocedure, 19
Check, 19
CloseFile, 20
Comment, 20
Comp, 21
CompAbs, 21
COS, 21
Display, 22
Displaymsg, 22
Do...Done, 23
DuplicateSpectrum, 23
EXP, 23
GetIntegrationTime, 24
GetLamplntensity, 24
GetLampShutter, 25
GetSpectrum, 25
Goto, 25
If, 26
Label, 26
LocateWavelength, 27
Log, 27
Logl0, 28
LogN, 28
Mult, 28
Norm, 29
OnButtonClick, 29
OnError, 30
OnErrorGoto, 30
OpenFile, 31
Pause, 32

013-RD000-000-12- 201010

63

A: Example Scripts

POW, 32

Prompt, 33

Ratio, 33
ReadRealVector, 34
ReadTable, 34
Savereading, 35

Scale, 35
SetDisplayPrecision, 36
SetIntegrationTime, 36
SetLamplntensity, 36
SetLampShutter, 37
ShowGraph, 37
ShowMenu, 38

SIN, 38

Sub, 38

Trim, 39

WaveLength, 39
WriteFile, 40
WriteSpectrum, 41

G

GetIntegrationTime, 24
GetLamplntensity, 24
GetLampShutter, 25
GetSpectrum, 25

Goto, 25

If, 26
installation, 9
Linux, 10
via CD, 9
via website, 10
Windows, 10
introduction, 1

L

Label, 26

Linux platform installation, 10

main program, 6
Mult, 28

Norm, 29, 38

OnButtonClick, 29

OnError, 30

OnErrorGoto, 30

OpenFile, 31

operating systems supported, 2
operators, 5

Pause, 32

pH measurement example script, 46
POW, 32

Prompt, 33

R

Ratio, 33
ReadRealVector, 34
ReadTable, 34

Savereading, 35

Scale, 35

script, 3
arithmetic, 5
built-in variables, 7
complete example, 43
constants, 3

LocateWavelength, 27 example, 43
Log, 27 flow control, 6
Logl0, 28 layout, 3
LogN, 28 main program, 6
operators, 5
pH measurement, 46
syntax, 43
64 013-RD000-000-12- 201010

Index

template, 43
TEXT literals, 5 T
user-defined procedures, 6
variable declaration, 3 TEXT literals, 5

scripting engine Trim, 39
arguments, 15
Jaz mode, 16 U
Tethered mode, 16
using, 15

scriptor, 15

scriptor launcher, 11
configuration, 11 V
main window, 12
prerequisites, 11

user-defined procedures, 6
using JSL on Jaz, 10

running application, 12 variable declaration, 3
scriptor launcher window Variab1e§

run section, 13 built-in, 7

script options, 13 W

script settings, 13
tethered Jaz network settings, 13

SD card, 10 WaveLength, 39
SetDisplayPrecision, 36 Windows

SetIntegrationTime, 36 scriptor launcher, 11
SetLamplntensity, 36 Windows platform installation, 10
SetLampShutter, 37 WriteFile, 40

ShowGraph, 37 WriteSpectrum, 41

SIN, 38

Sub, 38

support

operating systems, 2

013-RD000-000-12- 201010 65

A: Example Scripts

66 013-RD000-000-12- 201010

